
E1BAPP08 11/02/2010 11:56:59 Page 1

Appendix H: Control System
Computational Aids

H.1 Step Response of a System
Represented in State Space

In this section we will discuss how to obtain the step response of systems represented
in state space. We will begin by discussing how state equations can be used to
program a digital computer and progress to a computer program that you can use to
perform step-response simulations.

Using State Equations for Computer Simulations
One advantage of state equations is the ability to use this representation to simulate
control systems on the digital computer. This section is devoted to demonstrating
this concept. Consider the system represented in state-space by Eqs. (H.1).

_x1
_x2

� �
¼ 0 1

�2 �3

� �
x1
x2

� �
þ 0

1

� �
u tð Þ ðH:1aÞ

y tð Þ ¼ 2 3½ � x1

x2

� �
ðH:1bÞ

x1 0ð Þ
x2 0ð Þ

� �
¼ 1

�2

� �
ðH:1cÞ

This system is represented in phase-variable form and has a unit step input, u(t). We
are about to formulate a solution for the system output, y(t), by numerically
integrating the differential equation on the digital computer. We will use a method
called Euler’s approximation, where the area to be integrated is approximated as a
rectangle. The solution obtained on the computer is an actual time waveform plot
rather than the closed-form expression we arrived at via the Laplace transform.

Writing the state equations explicitly, we have

dx1
dt

¼ x2 ðH:2aÞ

dx2
dt

¼ �2x1 � 3x2 þ 1 ðH:2bÞ

1

E1BAPP08 11/02/2010 11:56:59 Page 2

If we approximate dx by Dx and dt by Dt, and multiply through by Dt

Dx1 ¼ x2Dt ðH:3aÞ

Dx2 ¼ �2x1 � 3x2 þ 1ð ÞDt ðH:3bÞ
We can say that the value at the next interval for either state variable is approxi-
mately the current value plus the change. Thus,

x1 t þ Dtð Þ ¼ x1 tð Þ þ Dx1 ðH:4aÞ

x2 t þ Dtð Þ ¼ x2 tð Þ þ Dx2 ðH:4bÞ
Finally, from the output equation (H.1b), y(t) at the next time interval, y(t + Dt), is

y t þ Dtð Þ ¼ 2x1 t þ Dtð Þ þ 3x2 t þ Dtð Þ ðH:5Þ
Let us see how this would work on the digital computer. From the problem
statement, x1 and x2 begin at t ¼ 0 with values 1 and �2, respectively. If we assume
a Dt interval of 0.1 second1, the change in x1 and x2 from 0 to 0.1 second is found from
Eqs. (H.3) to be,

Dx1 ¼ x2 0ð ÞDt ¼ �0:2 ðH:6aÞ

Dx2 ¼ �2x1 0ð Þ � 3x2 0ð Þ þ 1½ �Dt ¼ 0:5 ðH:6bÞ
from which the state variables at t ¼ 0.1 second are found from Eqs. (H.4) to be

x1 0:1ð Þ ¼ x1 0ð Þ þ Dx1 ¼ 0:8 ðH:7aÞ

x2 0:1ð Þ ¼ x2 0ð Þ þ Dx2 ¼ �1:5 ðH:7bÞ
Finally, the output at t ¼ 0.1 second is calculated from Eq. (H.5) to be,

y 0:1ð Þ ¼ 2x1 0:1ð Þ þ 3x2 0:1ð Þ ¼ �2:9 ðH:8Þ

The values of the state variables at t ¼ 0.1 second are used to calculate the values of
the state variables and the output at the next interval of time, t ¼ 0.2 second. Once
again the changes in x1 and x2 are,

Dx1 ¼ x2 0:1ð ÞDt ¼ �0:15 ðH:9aÞ

Dx2 ¼ �2x1 0:1ð Þ � 3x2 0:1ð Þ þ 1½ �Dt ¼ 0:39 ðH:9bÞ
from which the state variables at t ¼ 0.2 second are found to be

x1 0:2ð Þ ¼ x1 0:1ð Þ þ Dx1 ¼ 0:65 ðH:10aÞ

x2 0:2ð Þ ¼ x2 0:1ð Þ þ Dx2 ¼ �1:11 ðH:10bÞ

1Dt is selected to be small and, initially, at least an order of magnitude less than the system’s time constants.
In order to determine, empirically, how small Dt should be, the value of Dt can be successively reduced
after each response has been calculated by the computer until the difference between the current response
and the previous response is negligible. If Dt is too large, then error results from inaccurately representing
the area under the state variable curve. If Dt is too small, then round-off error will accumulate during the
computation because of the numerous calculations.

2 Appendix H: Control System Computational Aids

E1BAPP08 11/02/2010 11:56:59 Page 3

Finally, the output at t ¼ 0.2 second is calculated as,

y 0:2ð Þ ¼ 2x1 0:2ð Þ þ 3x2 0:2ð Þ ¼ �2:03 ðH:11Þ
The results are summarized in Figure H.1. Continuing in like manner until t ¼ tf, the
maximum desired time, the response for 0 � t � tf can be obtained.

Computer Program for Step Response
In this subsection we will design a computer program that simulates a system’s step
response using state equations. The codewas developedusingVisualBasic1Version 6
and converted to a stand-alone application that runs on a PC2. The resulting app-
lication, recommended for readers who do not have access to MATLAB1, can be
found in the Appendix H folder on www.wiley.com/college/nise3. To run the setup
program, open the folder labeled Step Response inside the Appendix H folder and
double-click on setup icon. For directions on running the program see the README
file inside the Appendix H folder. Let us now summarize the design of the step
response software.

First, we enumerate the software requirements as follows:

1. The user will input (1) system order, (2) components of the system, input, and
output matrix.

2. The user will input the initial conditions.

3. The user will input the following plot parameters: (1) iteration interval, (2) plot
interval, and (3) maximum time.

4. The program will plot the step response as well as listing the response data.

5. The program will replot the step response after allowing the user to change the
initial conditions as well as the plot parameters without reentering the system.

The program plots the step response of a system represented in state space and
permits the user to choose an iteration interval. A helpful technique of finding the
iteration interval is to run the program with successively diminishing iteration

FIGURE H.1 State variables
and output for the system of
Eqs. H.1

2Visual Basic is a registered trademark of Microsoft Corporation.
3MATLAB is a registered trademark of The MathWorks, Inc.

H.1 Step Response of a System Represented in State Space 3

E1BAPP08 11/02/2010 11:57:1 Page 4

intervals until reaching an iteration interval below which there is no appreciable
change in the results.

Another parameter the user can select is the print interval which allows the
user to print at a larger time interval than the iteration interval.

The execution time of the program is also an input parameter. The user should
choose a time for which the output has already reached a steady-state value.

A simplified flow-chart for the program is shown in Figure H.2 and uses the
system of Eqs. (H.1).

Code Module
We now present a sample implementation of the flow-chart of Figure H.2. The
routine can run independently, as part of a Visual Basic Code Module, or tailored to
another programming language or other machines, such as hand-held calculators.

FIGURE H.2 Flow-chart for
step response program

Input
System:

Store plot point

Solve state equations for next point

Maximum
time

exceeded?

Time to
store
plot

point?

Plot

End

No

Yes

No

Yes

x
•

= Ax + Bu; y = Cx

A =
a11 a12

a21 a22

⎡
⎣ ⎢

⎤
⎦ ⎥ = ⎢

 10

−2 −3

⎡
⎣

⎤
⎦ ⎥

Start

B =
b1

b2

⎡
⎣
⎢

⎤
⎦ ⎥ = ⎢ ⎥

0

1

⎡ ⎤
⎣ ⎦ ; C = 2 3][

Iteration interval: ΔT = 0.001 second
Initial state vector: x(0) = –21][

Plot interval: 0.1 second
Maximum time: 2 seconds
Maximum amplitude: 4

Δ x1 = (a11 x1+ a12 x2 + b)1 ΔT; Δx2 = (a21x1 + a22 x2 + b)2 ΔT

x1 = x1 + Δ x ; x1 2 = x 2 + Δ x ; y2 = c x1 1 + c x2 2

4 Appendix H: Control System Computational Aids

E1BAPP08 11/02/2010 11:57:2 Page 5

The routine can obtain its input variable values through the Visual Basic GUI
interface, as presented in the sample run below, or through another program written
to pass this code the input variables. The same is true of the output variables. In the
sample run below, output variables are passed to the Visual Basic GUI interface for
display, but could just as well be passed to another program.

We now list the sample subroutine, which we call CalcStateSpace:

’********** Input Variables**************
’Although the following arrays are being dimensioned for a
’100th order system, only a portion of the array, defined by
’the sys_order variable, is used.

Public X(100) As Single ’X vector input.
Public A(100, 100) As Single ’A matrix Input.
Public B(100) As Single ’B matrix Input.
Public C(100) As Single ’C vector Input

Public PRNT_Int ’Print interval input.
Public sys_order ’System order input.
Public DELTAT ’Delta time input.
Public MAXTIME ’Total run-time input.

’************** Output Variables***********************
Public DELTAX (1000) As Single ’Array holding the time for

’each point calculated.
Public Y (1000) As Single ’Array holding the output

’response value for each
’point calculated.

’**************Subroutine CalcStateSpace***************
Public Sub CalcStateSpace ()
On Error GoTo errorHandle

’*************Store initial value for plot*************
Let cx=0
For i=1 To sys_order

cx=cx + C(i-1)*X(i - 1)
Next i
Y(0)=cx

’******************** Start plot loop******************
For K=1 To CInt(MAXTIME/PRNT_Int) Step 1

’Index for Printing interval

’**************** Start iteration loop******************
For n=1 To CInt (PRNT_Int/DELTAT) Step 1

’Index for iteration interval
For i=1 To sys_order

Let ax=0
For j=1 To sys_order

ax=ax + A(i - 1, j - 1)*X(j - 1)
Next j
DELTAX (i - 1)=(ax+B (i - 1))*DELTAT

’Calculate delta X1
Next i

H.1 Step Response of a System Represented in State Space 5

E1BAPP08 11/02/2010 11:57:2 Page 6

For i = 1 To sys_order
X(i - 1) = X(i - 1) + DELTAX (i - 1)

’Calculate next x
Next i
Let cx = 0
For i = 1 To sys_order

cx = cx + C(i - l)*X(i - 1)
Next I

Next n

’***************** End iteration loop******************
Y(K) = cx

Next K
’***************** End plot loop***********************

Exit Sub
errorHandle:

message = "System Error: " + Err.Description
MsgBox (message)
On Error GoTo 0

End Sub

As an example, data entry and results for the code shown above are via a
graphical user interface (GUI) developed in Visual Basic 6 and produced by the
stand-alone application enclosed in this folder. Figure H.3 shows the GUI interface
for data entry using the system of Eqs. H.1 as an example. Figure H.4 shows the
output window for the example.

FIGURE H.3 Step response
program: GUI interface for
data entry;

6 Appendix H: Control System Computational Aids

E1BAPP08 11/02/2010 11:57:3 Page 7

H.2 Root Locus and Frequency Response

In this section we will develop a computer program that can be used as an alternative
to MATLAB to search for points on the root locus and obtain magnitude and phase
frequency response data. The code was developed using Visual Basic1Version 6 and
converted to a stand-alone application that runs on a PC. The resulting application,
recommended for readers who do not have access to MATLAB, can be found in the
Appendix H folder on this CD-ROM. To run the setup program, open the folder
labeled Root Locus inside the Appendix H folder and double-click on setup icon.
For directions on running the program see the README file inside the Root Locus
folder. The program also can be adapted to hand-help calculators. Let us now
summarize the design of the step response software.

First, we enumerate the software requirements as follows:

1. The user will input the number of open-loop poles and zeros.

2. The user will input the values of the open-loop poles and zeros.

3. The user will select polar or Cartesian coordinates for the test point.

4. The user will input the coordinates of the test point.

5. The user will initiate the calculation.

6. The program will display the angle and magnitude of the open-loop transfer
function at the test point as well as the gain.

7. The user can change the open-loop poles and zeros and the test point before
initiating another calculation.

A simplified flow-chart for the program is shown in Figure H.5.

Code Module
We now present a sample implementation of the flow-chart of Figure H.5. The
routine can run independently, as part of a Visual Basic Code Module, or tailored to
another programming language or other machines, such as hand-held calculators.

The routine can obtain its input variable values through the Visual Basic GUI
interface, as presented in the sample run below, or through another program written
to pass this code the input variables. The same is true of the output variables. In the

FIGURE H.4 Step response
program: output window

H.2 Root Locus and Frequency Response 7

E1BAPP08 11/02/2010 11:57:5 Page 8

sample run below, output variables are passed to the Visual Basic GUI interface for
display, but could just as well be passed to another program.

We now list the sample subroutine, which we call RootLocusCalc:

’************************* Input Variables *************************
Public Polar ’True or False. Determines if input test

’point is interpreted as polar coordinates
’(Polar = True or Cartesian Coordinates
’(Polar = False).

Public testAVal ’Test point x coordinate (Polar = False) or
’test point magnitude (Polar = True).

Public testBVal ’Test point y coordinate (Polar = False) or
’test point angle (Polar = True).

Public NumPolesVal ’Number of poles in system (0 to 10).
Public NumZerosVal ’Number of Zeros in system (0 to 10).

FIGURE H.5 Flow-chart for
root locus and frequency
response program

• Input number of poles
• Input number of zeros
• Input coordinates of poles
• Input coordinates of zeros
• Select polar or Cartesian
 coordinates for test point

Start

Begin calculation

Test point=
pole or zero?

Input test point

Give error message

Yes

poles angleszero angles -Angle = ∑∑
Gain = Π pole lengths / Π zero lengths

Magnitude = 1 / Gain

End

8 Appendix H: Control System Computational Aids

E1BAPP08 11/02/2010 11:57:6 Page 9

’The following variables have enough space for 10 poles,
’but only the number of data points referred to by NumPolesVal
’are stored in the array starting at the 0th element.
Public RLPoleRe (10) ’Stores each open-loop poles ’s real part.
Public RLPoleI (10) ’Storeseachopen-looppoles’simaginarypart.

’Thefollowingvariableshaveenoughspacefor10zeros,
’butonlythenumberofdatapointsreferredtobyNumZerosVal
’arestoredinthearraystartingatthe0thelement.

PublicRLZeroRe(10) ’Storeseachopen-loopzero’srealpart.
PublicRLZeroIm(10) ’Storeseachopen-loopzero’simaginarypart.

’**************************OutputVariables**************************
PublicRLKval ’ReturnstheGainatthegiventestpoint.
PublicRLMagVal ’Returnsthemagnitudeatthegiventestpoint.
PublicRLAngleVal ’Returnstheangleindegreesatthegiven

’testpoint.

PublicErrorFlag ’IfthisvariableissettoTrue,then
’anerroroccurredduringcalculation
’andtheoutputdataisdisregarded.

’**********************SubroutineRootLocusCalc**********************
Constpi=3.14159265358979

PublicSubRootLocusCalc()
DimdeltaX AsSingle
DimdeltaY AsSingle
ErrorFlag=False
RecGain=1
angle=0

IfPolar=TrueThen ’ConvertpolartestpointtoCartesian.
testReVal=testAVal*Cos(testBVal*pi/180)
testImVal=testAVal*Sin(testBVal*pi/180)

Else ’TestpointisCartesian-useasis.
testReVal=testAVal
testImVal=testBVal

EndIf

ForK=0ToNumPolesVal-1
ReVal=RLPoleRe(K)
ImVal=RLPoleI(K)

deltaX=testReVal-ReVal
deltaY=testImVal-ImVal

IfAbs(deltaX)<0.0000000001And_
Abs(deltaY)<0.0000000001Then
MsgBox("ERROR:Testpointisthesameasan"&_

"open-looppole.Enternewtestpoint.")
ErrorFlag=1
GoToexitrootlocus

Else

H.2 Root Locus and Frequency Response 9

E1BAPP08 11/02/2010 11:57:6 Page 10

RecGain=RecGain*CartToMag(deltaX,deltaY)
angle=angle-CartToAngle(deltaX,deltaY)

EndIf
NextK

ForK=0ToNumZerosVal-1
ReVal=RLZeroRe(K)
ImVal=RLZeroIm(K)

deltaX=testReVal-ReVal
deltaY=testImVal-ImVal

IfAbs(deltaX)<0.0000000001And_
Abs(deltaY)<0.0000000001Then
MsgBox("ERROR:Testpointisthesameasan"&_

"open-loopzero.Enternewtestpoint.")
ErrorFlag=1
GoToexitrootlocus

Else
RecGain=RecGain/CartToMag(deltaX,deltaY)
angle=angle+CartToAngle(deltaX,deltaY)

EndIf
NextK

angle=angle*180/pi
angle=(angle/360-Fix(angle/360))*360

exitrootlocus:
IfErrorFlag<>1Then

RLKval=RecGain
RLMagVal=1/RecGain
RLAngleVal=angle

EndIf

EndSub

’*********************FunctionCartToMag*********************
PublicFunctionCartToMag(XAsSingle,YAsSingle)AsSingle

CartToMag=Sqr(Abs(X^2+Y^2))
EndFunction

’*********************FunctionCartToAngle*********************
PublicFunctionCartToAngle(deltaX,deltaY)AsSingle

IfdeltaX=0Thenangle=pi/2_
Elseangle=Atn(Abs(deltaY)/Abs(deltaX))
IfdeltaY>=0AnddeltaX>=0Thenangle=angle
IfdeltaY>=0AnddeltaX<0Thenangle=(pi-angle)
IfdeltaY<0AnddeltaX<=0Thenangle=-(pi-angle)
IfdeltaY<0AnddeltaX>0Thenangle=-angle
CartToAngle=angle

EndFunction

Data entry andresults for the code shownaboveare via a graphical user interface
(GUI) developed in Visual Basic 6 and produced by the stand-alone application
included in theAppendixH folder. FigureH.6 shows theGUI interface for data entry

and results using G sð Þ ¼ sþ 1ð Þ
s sþ 3ð Þ sþ 5ð Þ and a test point ¼ �2 + j3 as an example.

10 Appendix H: Control System Computational Aids

E1BAPP08 11/02/2010 11:57:6 Page 11

FIGURE H.6 Root locus
program: GUI interface for
data entry and results

H.2 Root Locus and Frequency Response 11

E1BAPP08 11/02/2010 11:57:7 Page 12

Acknowledegment: The author wants to express appreciation to Alan H. Nise for the programming and GUI
design of the Step Response Program and the Root Locus and Frequency Response Utility. These programs
were based upon the original programs published in Control Systems Engineering, 2nd ed.

Copyright# 2011 by John Wiley & Sons, Inc.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more
than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is
built on a foundation of principles that include responsibility to the communities we serve and where we live
and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental,
social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon
impact, paper specifications and procurement, ethical conduct within our business and among our vendors, and
community and charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008 or online at http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in
their courses during the next academic year. These copies are licensed and may not be sold or transferred to a
third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return
instructions and a free of charge return shipping label are available at www.wiley.com/go/returnlabel. Outside
of the United States, please contact your local representative.

ISBN 13 978-0470-54756-4

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

